工业大数据未皇冠体育:来前路挑战重重

2019-05-31 22:05

    当互联网与IT技术对传统产业的改造越来越深入,全社会的信息化程度越来越高时,各行 各业会产生大量的用户大数据。

  大数据已经成国家战略,事关中国经济的转型与升级,以及中国在全球经济、政治、文化上的竞争力。

  在2015年第四届中关村大数据日的活动上,分享嘉宾来自各行各业。从个人出行到工业大数据,从能源到企业服务,大数据正快速与企业结合,拥有勃勃生机。围绕着“共享共融 数创未来”这个主题,在第四届中关村大数据日上,各位嘉宾发表了自身的精彩观点。

  从概念到应用落地

  过去几年,大数据还只是谈论概念,现在已经有了诸多应用。比如,在打车行业,如何利用大数据进行司机与乘客路线更精准的匹配,而不同场景、不同时段,用户出行的特点不同,司机也有不同的喜好与熟悉的区域,如何动态地将这两者匹配,实际上是大数据的难题。

  同样,在工业领域,一整套数据的标准、主数据、数据仓库,甚至BI,亦可以优化工业化生产,提升效率。这其中模型数据化、数据产品化,是工业大数据,两个重要的探索方向。

  而在民生领域,以龙信思源为代表的大数据公司,365体育投注网,为政府、社会组织及研究团队,提供了大量的数据产品支持,这也促进了整个民生行业大数据的发展。

  中国的大数据产业,才1500米,而未来的路是万米之长。这其中蕴含的机会也有很多。目前,大量的大数据创业公司,围绕数据交换、数据建模、数据分析、数据可视化、数据集成、数据仓库、数据行业应用等大数据产业链各个层面,开始创业。据了解,目前,大数据已经成为全球知名VC投资的重要方向,并且各个阶段企业的融资步伐,也开始加快。

  当大数据产业链、行业应用逐步发展完善之后,大数据将会形成质变,创新整个社会形态。

宽带资本董事长田溯宁认为,大数据不仅引起数据的量变,还会引起整个企业经营形态发生变化。过去,工业时代是以产品为中心,而大数据时代,需要的是围绕客户运营,依据客户需求,给出合适的数据产品。并且,可以实时将客户需求与产品进行较好匹配。“在客户最需要的时候,站出来,这比什么都有效。”

大数据的3大挑战

  大数据是从信息技术的底层来捕捉信息化的共性基础和未来发展趋势。大数据技术是底层技术,基础性、内蕴性、普适性可以给各个行业助力。但大数据的基础性、底层性,也带来了一些挑战。

  中国科学院院士、大数据专家徐宗本认为,大数据行业的真正挑战来自三个方面:一是原来的分析基础要变化,要融合统计学、计算理论基础、逻辑基础。二是,计算技术也需要重新革新,无论是存储、计算语言、还是计算方法都需要重新来过。三是,大数据做出来的结论对不对,还无法大规模验证,这是目前面临的最大挑战。

  在三大挑战中,应用层的挑战当属榜首。大数据,看上去很美,但对大多数人来说,更是雾里看花。如何将抽象的数据变成一个个可以在现实中实践的产品,这些需要各行各业进行深入探索。

  目前,大数据的浪潮才刚刚开始,许多传统产业看到了这方面的价值,但是并没有获得收益。而如果大数据没有相关的产业基础,亦很难有更多的务实创新。行业人士一致认为,未来,大数据的机会与挑战皆在与行业的结合上。

工业大数据

  未来的路要怎么走?

  大数据产业,既独立于行业,有自身的产业链条;又依赖于各个行业,形成大数据应用的广度与深度。

  共享经济这个词近两年很流星,除了实物类的共享外,还引领了数据层面的共享。Airbnb、滴滴打车、优步,这些都实现了物理资源的共享。而在IT界,云计算是将每个人需要的计算能力,汇聚到一起,形成一点对多点的需求。而在共享经济时代,不必将资源和计算的方式连接在一起,大众将自身拥有的资源共享,成为多点对多点的关系。在这一模式下,大数据也可以作为一种资源共享出来。

目前,国内进行的数据共享,主要围绕数据互换、数据定价、数据反馈等层面来进行。举个例子,一个利用大数据进行金融创新的企业,其获得的数据源主要来自于几个方面:用户、合作的场景与客户、第三方征信数据。与合作场景\客户往往通过数据互换、数据反馈来进行。而与第三方征信公司,数据往往通过数据定价来完成。

与会专家不少认为,由于数据定价模式还不完善,数据只处于交换阶段,这使得大规模的数据交换无法进行。未来,还会是通过数据交换平台来完成。