一探究竟 工业大数皇冠比分: 据的真正意义和价值

2019-05-31 19:28

近年来,以物联网、移动互联网、大数据、云计算为代表的新一代信息技术,以3D打印、机器人、人机协作为代表的新型制造技术,与新能源、新材料与生物科技呈现多点突破、交叉融合,智能制造技术创新不断取得新突破。2016年是我国“十三五”开局之年,也是我国系统推进智能制造发展元年,365体育投注网,智能制造将成为实施《中国制造2025》的重要抓手,推动我国经济发展保持中高速增长,助力产业完成中高端升级。

在西方国家有这样一句话:To live well,a nation mustproduce well,说明制造业是一个国家综合国力最重要的体现,也是决定民众生活质量的重要条件。在经历了互联网泡沫和经济危机之后,世界各国,尤其是发达国家开始重新意识到制造业的重要性,也在重新审视自身竞争力的优劣势。第四次科技革命的到来为各个国家提供了发展和转型的机遇,也使他们面临竞争力格局变化的挑战,智能制造成为世界各国竞争的新战场。无论是德国提出的“工业4. 0 国家战略”,美国提出的“国家制造业创新网络(NNMI)计划”,或是日本的“工业价值链计划(IVI)”等,无不围绕着制造业这个核心。中国改革开放三十多年来,综合国力和人民生活水平的提升过程中,制造业的快速发展起到了决定性的作用,中国成为世界制造业的新中心,也连续几年成为“世界制造力竞争指数”最强的国家。在新一轮的制造业革命中,中国也感受到来自世界各国新技术战略的压力,相继提出“中国制造2025”,“互联网+ ”和“供给侧改革”等多项措施。

每一次制造革命的进步,除了我们能够可见的技术要素以外,更重要的是这背后的制造哲学的进步。现代制造业从第二次科技革命到现在,经历了标准化、合理化+ 规范化、自动化+集成化、网络化+ 信息化四个阶段。这背后的制造哲学可以概括为:以低成本生产高质量的产品;通过全流程改善降低浪费、次品和事故;通过产品全生命周期的数据管理,为用户提供所需要的能力和服务。在以上几个阶段的基础上,现在的制造系统正处在向智能化+ 客制化迈进的阶段,目标是实现零故障和预测型的生产系统,并在无忧的生产环境中以低成本快速实现用户的客制化需求。

那么,如何实现智能制造?有些人说大数据是实现智能制造的核心技术,也有人说要靠互联网、信息物理系统技术(CPS),或是人工智能和机器人等。如果大数据是智能制造的核心驱动力,那么我们该怎么去定义和使用大数据?关于这个问题,我在《工业大数据》这本书中曾表达过一个观点:大数据并不是目的,而是看待问题的一种途径和解决问题的一种手段。通过分析数据,可以预测需求、预测制造、解决和避免不可见问题的风险,和利用数据去整合产业链和价值链,这才是大数据的核心目的。

大数据与智能制造之间的关系可以总结为:制造系统中问题的发生和解决的过程中会产生大量数据,通过对这些数据的分析和挖掘可以了解问题产生的过程、造成的影响和解决的方式,这些信息被抽象化建模后转化成知识,再利用知识去认识、解决和避免问题,核心是从以往依靠人的经验(experiencebased),转向依靠挖掘数据中隐性的线索(evidence based),使得制造知识能够被更加高效和自发地产生、利用和传承。因此,问题和知识是目的,而数据则是一种手段。今天我们来谈利用大数据实现智能制造,是因为大数据已经成为一个日益明显的现象,而在制造系统和商业环境变得日益复杂的今天,利用大数据去解决问题和积累知识或许是更加高效和便捷的方式。

大数据的目的并不是追求数据量大,而是通过系统式地数据收集和分析手段,实现价值的最大化。所以推动智能制造的并不是大数据本身,而是大数据的分析技术。在新制造革命的转型中,是否能够更加有效地利用好大数据,决定了能否在竞争中脱颖而出。在现在的制造中,存在着许多无法被定量、无法被决策者掌握的不确定因素,这些不确定因素既存在于制造过程中,也存在于制造过程之外的使用过程中。前三次工业革命主要解决的都是可见的问题,例如避免产品缺陷、避免加工失效、提升设备效率和可靠性、避免设备故障和安全问题等。这些问题在工业生产中由于可见可测量,往往比较容易避免和解决。不可见的问题通常表现为设备的性能下降、健康衰退、零部件磨损、运行风险升高等。这些因素由于其很难通过测量被定量化,往往是工业生产中不可控的风险,大部分可见的问题都是这些不可见的因素积累到一定程度所造成的。